Prediction of Machining Operations and Surface Roughness Using Artificial Neural Network
نویسنده
چکیده
Surface roughness is considered as one of the most specified customer requirements in machining processes. For efficient use of machine tools, selection of machining process and determination of optimal cutting parameters (speed, feed and depth of cut) are required. Therefore, it is necessary to find a suitable way to select and to find optimal machining process and cutting parameters for a specified surface roughness values. In this work, machining process was carried out on AISI 1040 steel in dry cutting condition in a lathe, milling and grinding machines and surface roughness was measured. Forty five experiments have been conducted using varying speed, feed, and depth of cut in order to find the surface roughness parameters. This data has been divided into two sets on a random basis; 36 training data set and 9 testing data set. The training data set has been used to train different artificial neural network (ANN) models in order to predict machining processes and surface roughness parameter values through back propagation network. Experimental data collected from tests were used as input parameters of a neural network to identify the sensitivity among machining operations, cutting parameters and surface roughness. Selected indexes were used to design a suitable algorithm for the prediction of machining processes. A software was developed and implemented to predict the machining processes and surface roughness values. The results showed that the proposed models are capable of predicting machining operations, cutting parameters and surface roughness.
منابع مشابه
Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling
Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...
متن کاملپیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی
Optimization of machining parameters is very important and the main goal in every machining process. Surface finishing prediction is a pre-requirement to establish a center for automatic machining operations. In this research, a neuro-fuzzy approach is used in order to model and predict the surface roughness in dry turning. This approach has both the learning capability of neural network and li...
متن کاملNeural Network Modeling and Prediction of Surface Roughness in Machining Aluminum Alloys
Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perce...
متن کاملModeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method
Machine parts during their useful life are significantly influenced by surface roughness quality. The machining process is more complex, and therefore, it is very hard to develop a comprehensive model involving all cutting parameters. In this study, the surface roughness is measured during turning at different cutting parameters such as speed, feed, and depth of cut. Full factorial experimental...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کامل